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Abstract. The usual fixed-size box-counting algorithms are inefficient for computing
generalized fractal dimensions in the range ofq < 0. In this letter we describe a new numerical
algorithm specifically devised to estimate generalized dimensions for large negativeq, providing
evidence of its better performance. We compute the complete spectrum of the Hénon attractor,
and interpret our results in terms of a ‘phase transition’ between different multiplicative laws.

Much effort has been devoted in recent years to the study of the fractal patterns [1] exhibited
by many physical systems such as diffusion-limited aggregation [2], viscous fingering [3]
and chaotic attractors of nonlinear dynamical systems [4]. It has become clear, however, that
many natural fractal objects are actuallymultifractals [5, 6], that is, they are composed of
an infinite set of interwoven subfractals, characterized by amultifractal spectrumf (α) (see
[7–10] and references therein). The usual fixed-size box-counting multifractal formalism for
a general measureµ on Rd considers the so-calledpartition sumZε(q) = ∑

µ(B) 6=0(µ(B))q ,
q ∈ R, where the sum runs over all boxesB of sideε taken from anε-grid Gε, i.e.

B =
d∏

k=1

[lkε, (lk + 1)ε[ (1)

lk being integer numbers. Thegeneralized dimensionsDq [9–12] are then mathematically
defined by the limit

Dq = 1

q − 1
lim
ε→0

logZε(q)

logε
. (2)

The f (α) spectrum is then given by the Legendre transformationf (α) = minα{qα − (q −
1)Dq} [7–10].

These definitions, though temptingly simple and rigorous, cause problems even in their
pure mathematical application. To be more precise, it can be shown that the limit (2), if
it exists, can only be∞ for q < 0 [9]. This is obviously due to the presence of boxes
B with an unnaturally small measure, which contribute to the functionZ with a diverging
term. Serious problems also arise when translating this mathematical notion into a numerical
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algorithm, which we will call thestandard algorithm(SA) in the following. This algorithm
computes an estimateD(q) of the mathematical dimensionDq as the slope of a least-squares
fitting of log(Zε(q))/(q − 1) against log(ε). The SA proves to be slowly convergent and
it works well only for q > 1 and only for measures inRd with d 6 2, being especially
problematic in the regionq < 0 [13, 14]. Some attempts have been made in order to design
efficient fixed-size box-counting algorithms [15–17], but all of them fail when dealing with
negativeq.

In a recent paper [9] one of the authors proposed a new mathematical multifractal
formalism, devised to overcome the drawbacks for negativeq. The basic idea is very
simple: if we do not assumea priori knowledge on the distributionµ, we cannot prevent,
given an arbitraryε-grid, some boxesB meetingµ only in a very small part. Such a box
B possesses an extremely small and unnatural measure and, hence, constitutes a very poor
approximation of a ball centred in a point on the distribution. For large positiveq, such
mismatching boxes can be neglected since their contribution toZ is almost null. But this
is not true for negativeq.

From an intuitive point of view, a naive way to cure this problem is to consider the
measure ofextended boxesB∗, obtained by expanding a given boxB ∈ Gε by a factor 3,
i.e. (with reference to equation (1))

B∗ =
d∏

k=1

[(lk − 1)ε, (lk + 1 + 1)ε[.

Using theextended partition sumZ∗ [9]

Z∗
ε (q) =

∑
µ(B)6=0

(µ(B∗))q, (3)

we formally define theextended generalized dimensionsD∗
q as

D∗
q = 1

q − 1
lim
ε→0

logZ∗
ε (q)

logε
. (4)

From a theoretical point of view,D∗
q performs much better thanDq . It can be proven

[9] that the limit (4) is the same if the continuousε is restricted to any sequenceεn with
εn+1 > νεn for some 1> ν > 0. In addition,D∗

q is invariant underbilipschitz coordinate
transformations, it coincides withDq as defined in (2) forq > 0 and produces the expected,
meaningful results for self-similar measures.

In this letter we describe a numerical algorithm implementing this new multifractal
formalism, which we will call in the following theenlarged box algorithm(EBA). The
application of the EBA will allow us to determine, for the first time, a fixed-size box-
counting estimate of the complete multifractal spectrum of the Hénon attractor [18] (that is,
both positive and negativeq).

We consider distributionsµ as being approximated by a sample ofN discrete points from
the attractor of some dynamical system. Given anε-grid of boxes of sideε, the occupation
numberni(ε) of the ith box is defined as the number of sample points it contains. The
natural measureµi of box Bi is defined by the fraction of time which a generic trajectory
on the attractor spends in that box [12], and is roughly equal toni(ε)/N in the limit of
largeN . The implementation of SA thus estimates the generalized dimensionD(q) as the
slope of a linear fit of

1

q − 1
logZε(q) ∼ 1

q − 1
log

( ∑
i

(ni(ε))
q

)
(5)
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against logε. Note that we have dropped the normalization factorN = ∑
i ni(ε) since it

is independent ofε. To implement EBA, we replace the occupation numbersni(ε) by the
extended occupation numbersn∗

i (ε) which are defined by

n∗
i (ε) =

∑
j : Bj ⊆B∗

i

nj (ε)

that is, the number of sample points contained in the boxBi and in all its 3d −1 neighbouring
boxes. The implementation of EBA thus computes an estimateD∗(q) of D∗

q as the slope
of a linear fit of

1

q − 1
logZ∗

ε (q) ∼ 1

q − 1
log

( ∑
i

(n∗
i (ε))

q

)
(6)

against logε. As with the SA, we do not include a normalization termN∗(ε) = ∑
i n

∗
i . From

a strictly mathematical point of view, and due to the limitε → 0 in (4), the normalization
plays no role, since even thoughN∗(ε) is not constant, it is bounded:N 6 N∗(ε) 6 3dN .
From a numerical point of view, we experimentally find that definition (6) works well for
the measures we investigated. Moreover, the inclusion of the normalization factor results
in poorer correlation coefficients and larger error bars. We thus infer that, when performing
the linear regression in a range of sufficiently small values ofε, we can neglect the effects
of normalization. Unfortunately, asN∗(ε) is not constant, the convergence is affected by
this procedure in the neighbourhood ofq = 1. Consequently, the estimate ofD1 provided
by EBA should be taken with care.

Table 1. Comparison of some numerical values from the SA and EBA with the analytic result
Dq for a deterministic fixed-size measure.

Analytical result SA EBA

D40 = 1.0256 D(40) = 1.02 D∗(40) = 1.02
D10 = 1.1097 D(10) = 1.11 D∗(10) = 1.11
D0 = 1.5850 D(0) = 1.62 D∗(0) = 1.62
D−5 = 2.0322 — D∗(−5) = 1.99
D−10 = 2.1963 — D∗(−10) = 2.17
D−25 = 2.3222 — D∗(−25) = 2.30
D−50 = 2.3677 — D∗(−50) = 2.34

In order to check the accuracy of our algorithm, we have applied both the SA and the
EBA to some self-similar deterministic multifractal measures onR2 [8–10] constructed with
the ‘Chaos Game’ [19]. Among others, we considered afixed-sizemeasure with contraction
factor r = 1/2 and probabilitiesp1 = 3/16, p2 = 5/16, andp3 = 8/16; and afixed-mass
measure, withr1 = 0.6, r2 = 0.4, andr3 = 0.3, and probabilitiesp = 1/3. To allow for
comparison, we have chosen the parameters exactly as in [20] where both measures are
solved analytically. Figures 1(a) and (b) depict the analytical dimensionDq , together with
the estimates from the SA and EBA, for the fixed-size and fixed-mass measures, respectively.
Table 1 also provides some numerical values for the first measure. For the computations
we have averaged 50 different approximations of the measures, each one composed by
N = 50 000 points. Linear regressions were performed over an interval of 1.5 decades.
Statistical errors from the regression algorithm yield error bars of about 0.01, except for
SA at negativeq. From our data we conclude that both the SA and the EBA provide
fairly good estimates forq > −2. The EBA, however, shows better regression coefficients
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and slightly smaller error bars. Forq < −2, the SA suffers from unacceptable regression
coefficients and its output is, as expected, meaningless. On the other hand, the estimates of
the generalized dimensions from EBA are in excellent agreement with the analytical values
over the whole range of negativeq analysed (compare table 1).

Figure 1. (a) Generalized dimensions from the SA and EBA for a deterministic fixed-size
measure. (b) The same for a deterministic fixed-mass measure. The full curves in both figures
correspond to the analytical valueDq [20].

Finally, we considered the standard Hénon attractor [18], with parametersa = 1.4 and
b = 0.3. We analysed averages over 50 different realizations of the attractor, each one
composed ofN = 150 000 points. Linear regressions were performed over an interval
betweenεmin = 10−2.5 and εmax = 10−1. Figure 2 shows the scaling region of the
(unnormalized) extended partition sumZ∗ for different values ofq. The linear fits are
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Figure 2. Log–log plot of the unnormalized extended partition sumZ∗ of the natural measure
on the H́enon attractor as a function ofε, for different values ofq.

Figure 3. (a) Generalized dimensions from the SA and EBA for the natural measure on the
Hénon attractor. Being meaningless, the values of the SA forq < 0 have not been plotted.
(b) Detail of the region−10 6 q 6 0.

excellent, even for a negative value as large asq = −50. In figure 3 we have plotted the
estimates from the SA and the EBA; table 2 shows some numerical values, together with
theoretical predictions and other numerical estimates from box-counting algorithms. The
results shown in figure 3 present several remarkable features that deserve some discussion:

(i) In the region of positiveq we have found thatD∗(q) > D(q). The values estimated
with the SA are similar to those found by other authors by means of fixed-size [21] and
fixed-mass [22] box-counting algorithms. On the other hand, the results from the EBA are
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Table 2. Hénon attractor: Comparison of the performance of the SA and EBA with both
theoretical predictions and other numerical estimates.

Theoretical Numerical
predictions estimates SA EBA

D−∞ = 1.352a D(−∞) ' 1.5b — D∗(−50) = 1.26
D−6 ' 1.3c — — D∗(−6) = 1.23
D0 = 1.276d D(0) = 1.259e D(0) = 1.23 D∗(0) = 1.23
— D(2) = 1.199e D(2) = 1.21 D∗(2) = 1.21
D6 ' 1.05c — D(6) = 0.98 D∗(6) = 1.08
— D(40) ' 0.8f D(40) = 0.82 D∗(40) = 0.93
D∞ 6 0.84g D(∞) ' 0.87b

a [24].
b [22], estimate from figure 2.
c [23], estimate from figure 1.
d [23].
e [21].
f [21], estimate from figure 2.
g [13].

somewhat larger, out of the error bars. They are, however, in close agreement with some
theoretical predictions, as shown in table 2. It is known that the generalized dimensions of
chaotic attractors computed from standard box-counting algorithms are significantly below
the theoretical predictions. This fact is considered to be a fundamental limitation of this
sort of algorithm [21], and it is attributed to the local properties of the natural measure in
those sets. The measure is extremely inhomogeneous in some regions, which produces a
non-convergence of the partition sum and hence an oscillating behaviour by the regression
lines used to estimateD(q). Table 2 shows that the EBA is, in some cases, closest to the
theoretical predictions, especially for the extended Kaplan–Yorke relation approach in [23].
This better performance of the EBA could be connected with the smoothing effect of the
extended boxes, which would attenuate the inhomogeneities of the measure. We would like
to note, however, the disagreement with the predictionD∞ 6 0.84 from [13].

(ii) As far as we are aware, we have computed, for the first time, a fixed-size box-
counting estimate ofD−∞ for the H́enon attractor (around 1.3). This value is in very good
agreement with theoretical predictions in whichD−∞ is conjectured to be 1.352 [24]. We
would like to stress, however, the disagreement with the fixed-mass estimate around 1.5 in
[22].

(iii) D∗(q) shows a striking inflection in the region−10 < q < 0 (see figure 3(b) for
a detail). This inflection is larger than the error bars (around 0.01) so that it does not seem
to be ascribable to a mere statistical fluctuation in our results. Moreover, the inflection
turns out to be very robust: it does not disappear when shifting the limits of the linear
fit, increasing the number of sample pointsN or the number of boxes in the discretization
of ε, or even when normalizing the extended partition sumZ∗

ε . This latter fact excludes
a possible malfunctioning of the EBA due to the omission of the normalization factor
N∗(ε) (compare the earlier discussion of equation (6)). Since theDq spectra are known
to monotonically decrease with growingq [12], we view the mentioned inflection as a
numerical consequence of the very property of the Hénon attractor’s measure which we
interpret as a ‘phase transition’ between the multiplicative laws ruling the different regions
of the attractor. Dense regions dominate the behaviour ofDq for q � 0, while sparse
regions prevail forq � 0. Given that the H́enon attractor is not self-similar [13], it could
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be possible that the measure would show very different multiplicative laws in each of these
regions. In the limiting cases|q| � 1 we would observe a dominant behaviour and a
well defined functionD∗

q ; therefore, we would then obtain an accurate estimationD∗(q).
In the intermediate rangeq ∼ 0 (q < 0), however, both multiplicative behaviours would
be seen at the same time and the inflection would then appear as a numerical artifact of
the algorithm, related to the prefactor in the asymptotic power lawZ∗

ε (q) ∼ ε(q−1)D∗(q).
For self-similar measures this prefactora = limε→0 Z∗

ε (q)ε−(q−1)D∗(q) can be computed and
shown to exist by a simple application of the well known renewal theorem [25]). In fact,
it follows that a depends heavily on the parameters of the multiplicative process producing
the self-similar measure. The prefactor has, therefore, considerable influence on the value
of D∗(q) estimated by a linear regression, thus giving rise to a larger indeterminacy which
would account for the observed inflection. To support this point of view we would like
to mention two related phenomena. First, with superpositions of two self-similar measures
we observe numerical behaviour of a similar kind, which are not found in the spectrum
Dq defined through a mathematical limit [26]. Second, we note that there are self-affine
measures with non-differentiable spectrumD∗

q [27]. The irregular points on the spectrum
naturally cause similar numerical problems. They correspond, as is shown in [27], to one
eigendirection gaining or losing influence on the partition sumZ∗ asq varies. So, instead
of rejecting the numerical outcome from the EBA, we welcome it as a particular property
of the H́enon attractor and, thus, as a provocative thought. In particular, we consider our
result to support the conjectured non-self-similarity of the Hénon attractor. We would like
to stress that we gained our intuition due to the EBA’s ability to deal with negativeq.

In this letter we have described a more efficient enlarged box algorithm (EBA) for
estimating generalized dimensions. For deterministic self-similar measures, the EBA
numerically renders an excellent agreement with the theoretical result in the whole range of
values ofq analysed, with small error bars and larger correlation coefficients. In analysing
the H́enon attractor, we find dimensions forq > 0 which are in better agreement with some
theoretical predictions than the numerical results from the SA. Using the EBA we estimate,
for the first time with a fixed-size box-counting algorithm, the spectrum for large negative
q, obtaining a very good performance and values also in good concordance with theory.
We interpret the inflection shown by the spectrum as a numerical consequence of a ‘phase
transition’ taking place between different multiplicative laws ruling the different regions of
the attractor.

We thank Jordi Mach for many useful discussions and suggestions. RPS gratefully
acknowledges a fellowship from the Museu de la Ciència de la Fundació ‘la Caixa’, Spain.
RHR gratefully acknowledges partial support by a ONR grant N00014-90.J.1026.
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